
Field behaviour of the XY chiral model on a Cayley tree

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 1405

(http://iopscience.iop.org/0305-4470/25/6/004)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys. A: Math. Gen. 25 (1992) 1405-1415. Printed in the UK 

Field behaviour of the XY chiral model on a Cayley tree 

AmCrico T Bernardes and Mdrio J de Oiiveira 
lnstituto de Fisica, Univenidade de S o  Paulo, Caixa Postal 20516,01498 SHo Paulo, Brazil 
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Abstract. In  this paper we present a study of the XY c h i d  model an a Cayley tree in the 
presence of an external uniform magnetic field. We calculate the phase diagram at zero 
temperature from a corresponding I D  mapping. Ferromagnetic, commensurate and inwm- 
mensurate modulated phases as well as chaotic Structures are present in the cero temperature 
limit. In this case we also obtain a devil's staircase and determine the route to chaos, which 
is in agreement with Feigenbaum's scenario. Far finite temperatures, the phase diagrams 
are obtained from a 2D mapping. The chaotic behaviour is present only at low temperatures. 

1. Introduction 

Modulated structures are found in several problems of solid state physics. The modula- 
tion arises from a competition between the natural ordering of the order parameter 
and the order of the underlying lattice [l]. There are many experimental examples in 
which we observe modulated structures: rare-gas monolayers adsorbed on graphite, 
liquid crystals, thiourea, etc. Magnetic systems with modulated structures are found 
in several rare-earth compounds. 

Basic models with commensurate and incommensurate modulated phases have 
been proposed and studied in recent decades, the best known being the ANNNI model 
[2] and the asymmetric p-state clock model, also called the chiral clock model [3,4]. 
In the ANNNI model one has competing nearest- and next-nearest-neighbour interac- 
tions (ferro- and anti-ferromagnetic interactions), while in the asymmetric clock model 
only nearest-neighbour interactions are present. The latter has two different interactions 
between the sites: a ferromagnetic and a vectorial interaction. The competition between 
them produces a tendency for the phase angle to have a continuous rotation as a 
function of position along the direction of modulation. The magnetization is character- 
ized by a continuously varying wavenumber 9 in the modulation direction while in 
the ferromagnetic phase q is zero. rhus the parameter 9 is a good iabei for the 
modulated phase. 

The XY chiral model arises as a generalization of the p-state clock model. We 
define plane spins at each site of the lattice with ferromagnetic interactions between 
spins in the plane and competing interactions in the modulated direction (the z 
direction). In the present work we also introduce an external uniform magnetic field 
in the x directicln. The XY chiral model in a sinusoidal field was solved by Banerjea 
and Taylor [ 5 ] .  Their phase diagram is qualitatively similar to that of the Frenkel- 
Kontorova model. Yokoi et al [6] studied the ground state of the XY chiral model in 
a magnetic field by using the method of effective potentials. They found ferromagnetic, 
commensurate and incommensurate phases. In the low-field region their phase diagram 
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is also very similar to that of the Frenkel-Kontorova model, while at high field only 
the ferromagnetic phase is present. 

In this publication we study the XY chiral model in a magnetic field on a Cayley 
tree in the infinite coordination limit, through a 2D nonlinear mapping. We remark 
that this limit produces simple equations which are amenable to some detailed numeri- 
cal investigations. A similar procedure has been used by Yokoi et a/ [7] to obtain the 
infinite coordination limit of Vannimenus's mapping for an analogue of the ANNNI 

-ode! 0:: a Cap!ey tree [P, 9;:. =e =..=de! is. so!ved by a :ecu:sion n!stion which we 
derive in section 2. This recursion relation is iterated numerically, yielding different 
types of attractors which characterize the different phases. In section 3 we analyse the 
zero temperature behaviour of the model and in section 4 we analyse the model for 
finite temperatures. Finally, in section 5 we present our conclusions. 

A T Bernardes and M J de Olioeira 

2. Tine modei and ihe recursion reiaiions 

The XY chiral model in the presence of a magnetic field can be defined by the 
Hamiltonian 

&P=-JI S,.S,-.iz 1 (SiXS,).i-xH.S, (1) 
( U )  ( U )  

where the sum (ij) is over nearest neighbours. The spins S, have components in the 
xy plane only, and i represents the direction of modulation. On a Cayley tree i points 
towards the centre of the tree and the phase modulation takes place with respect to 
the generations of the tree. We start by considering the p-state chiral model and only 
later take the limit of an infinite number of states in order to reobtain the continuous 
vector interactions. 

The components of the spin S, can be written as Sj. = cos 'pi and Si* =sin 'pi, where 
'pi = 2 m J p  represents the angle between the direction of the plane spin Si and the x 
axis and nj = 0, 1, . . . , p - 1. Thus Hamiltonian (1) can be written in the more usual form 

where 3, = J cos[2~A/p], J2= 3 sin[Z~rA/p] and A is the 'chiral field'. 

branching ratio r ( r =  k -  1). On the boundary of the tree-which we call the zeroth 
A -  :Il...+-ntnA :I fin..-- t ..IO , -n-o:Am- n trnn .&th m n r A i n n t i n n  ni8mh-r 2nd 
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Figure 1. Sub-branch of a Cayley tree with coordination number k (branching ratio 
I =  k- I ) .  The rite 1 of the generation ( I f l )  defines the sub-branch. 
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generation-we fix the states on all sites. The partition function is calculated iteratively 
by moving from the boundary towards the interior of the tree. The partial partition 
function of a sub-branch of a generation I where the innermost site i is in state n, is 
denoted by Znc(l) .  Then the partial partition functions of the succeeding generations 
can be related through the expression 

1)=[exp(-P€.~,)Z,(l)l'exp(PH cos QJ (3) 

for all n, = 0, 1, . . . , p - 1 with p = 1/ k.T; where 

(4) 

represents the interaction energy between succeeding sites i and j on the Cayley tree. 
In the infinite coordination limit ( r  + 00) we replace the coupling constant I by J /  r 

as a normalizing condition [lo]. In this case we can write 

Thus the magnetization of a site i of generation ( I +  1) may be related to the magnetiz- 
ation of the previous generation 1. As we assume uniform boundary conditions, all 
sites of a generation have the same magnetization. We then use m and m' to represent 
the magnetizations of successive generations. Recursion relations for the X Y  chiral 
model can be obtained by taking the limit of an infinite number of states. For p + m, 
we replace the sum over states, l /p  Z,f[2an/p], by the integral 1/2aJf(0)  d0, where 
0 = 2?m/p. Defining the complex magnetization m = M eiv, where M is the modulus 
of the magnetization and Q the angle between m and the x axis, we obtain the ZD 
mapping M + M', Q + Q', given by 

and 

M sin(q + S) 
h+Mcos (p+S)  

tan Q'= (7) 

w h e r e R = ( h Z + M Z + 2 h M c o s ( q + S ) )  with h = H / J ,  S=ZnAand Io(x)and I,(x)are 
the first-class Bessel's functions of order 0 and 1 respectively. 

The different phases of the model are now characterized by the different fixed 
points and periodic orbits of the ZD mapping ( M ,  Q )  + (M', 9'). Five types of attractors 
are found: 

( i )  a trivial fixed point which characterizes the paramagnetic phase; 
(ii) a non-trivial fixed point which corresponds to the ferromagnetic phase; 
(iii) a periodic orbit of period N which corresponds to the commensurate modu- 

(iv) a I D  orbit which characterizes the incommensurate modulated phase; and 
(v) a strange attractor which characterizes a chaotic structure. 
In the following sections we present our results for the phase diagrams of the model. 

lated phase of period N; 
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3. The zero temperature limit 

To obtain the equations of the mapping for the zero temperature limit we take the 
T=O limit in equations ( 6 )  and (7). In this case, the magnetization tends to 1, 
independently of the other variables. The mapping reduces to one dimension and is 
given by the following equation: 

A T Bernardes and M J de Oliveira 

sin(v+S) 
h +cos(q + 6) tan Q'= 

where rp is the angle between the local magnetization and the x direction. It is easy 
to see that the phase diagram does not change if 4 is translated by an integer. Also, 
the phase diagram has reflexive symmetry with respect to the lines 4=0, *1/2, f l ,  
f 3 / 2 , .  . . . Thus we present the phase diagram for the region O <  4 ~ 0 . 5  only. 

In order to determine the phase of each point of the phase diagram one must 
compute the sequence rpo+ Q, + q2+ .  . . for arbitrary values of rpo. The phase is then 
defined by the winding number 

where 6 n + l = ~ n + l  i f v n t l > v n  or 6 n + l = v n + l f 2 ~  ifv,,+,<rp-. 
When q = 0 the system is in a ferromagnetic phase. This corresponds to parallel 

orientation of the spins. A second type of solution corresponds to the case in which 
the winding number is given by q = Q/P,  where Q and P are integers. In this case, 
the system is in a commensurate modulated phase and the winding number coincides 
with the wavenumber of the helix described by the orientation of successive spins (1). 
The number Q is the period of the oscillation (rotation of successive spins in the plane 
perpendicular to the direction of modulation). In a period the spins describe P complete 
rotations about the direction of modulation. 

Finally, in a third type of solution, q may be an irrational number. The system 
may then be in either of two situations: in an incommensurate modulated phase or in 
a chaotic phase. The chaotic phase is determined from its Lyapunov exponent [ll].  

The phase diagram is shown in figure 2. The grey region represents the ferromagnetic 
phase (which is present in the zero temperature limit only). This region is bounded 
by the line F. The fixed point which represents the ferromagnetic phase is unstable on 
this line. If one increases A at a constant value of the magnetic field h a I D  orbit arises. 
This corresponds to a ferromagnetic-modulated second-order phase transition. For 
2 < h, only the ferromagnetic phase is present. 

3.1. h = O  

For h = 0 the mapping reduces to Q'= Q + 6. Each commensurate modulated phase 
corresponds to a point on the line h = 0. These points form a zero-measure Cantor set 
[12]. Between any two points which represent commensurate modulated phases, we 
can find an infinite number of points representing incommensurate modulated phases. 

3.2. O < h < l  

If we increase the magnetic field from a point which represents a commensurate 
modulated phase on the h = 0 line, a wedge-shaped region appears in which the system 
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Figure 2. Phase diagram for the zero temperature limit of the XY chiral model (for 
symmetry reasons we show only the diagram for 0 6  A 6  0.5-see the text). The grey region 
represents the ferromagnetic phase and the hatched region represents the chaotic phase. 
The fractional numbers indicate the value of q of the ~ o m m e n s ~ r a t e  modulated phases 
shown in this representation (only five tongues are shown). The dashed rectangle will be 
amplified in figure 4. 

is in the same commensurate modulated phase. These regions are called ‘Arnold 
tongues’ [ l l ,  131. For every rational value of 4 in the h = O  line we obtain a region of 
a commensurate modulated phase. In the name of clarity, only five of these tongues 
(1/5, 1/4, 1 /3 ,2 /5  and 1/2) are shown in the figure. The phase 1/2 is the antiferromag- 
netic phase. Tongues with the same Q (which represent phases with the same period) 
have the same width. For all phases this width grows when we increase the magnetic 
field. This growth is associated with the tendency for synchronization of driven 
oscillations. 

As can be seen from figure 2, if we increase 4 at  a constant value of the magnetic 
field, q also increases. If we represent q as a function of 4, a staircase shape arises, 
as shown in figure 3. Each step of this staircase corresponds to the width of a 
commensurate modulated phase. If between two steps we can find an infinite number 
of steps, this staircase is called a ‘devil’s staircase’ [121. Each incommensurate modu- 
lated phase is only a point in this staircase. If the sum of the widths of the steps is 
less than the width of the whole interval the staircase is called incomplete (the rational 
numbers do not occupy the whole space). In this case there are always incommensurate 
modulated phases between any two commensurate modulated phases. In contrast, if 
this sum is equal to the interval the staircase is called complete. 
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Figure 3. Devil‘s staircase for the zero temperature limit of the XY chiral model for h = 1. 
We show only the steps with width greater than 10.‘ (in A units). 

When h tends to h = 1 the commensurate modulated phases tend to dominate the 
phase space. We show the devil’s staircase for h = 1 in figure 3 (in this figure we show 
only the steps with widths greater than in units of A). In order to check whether 
the staircase is complete, we must calculate the sum of the widths of the steps. The 
total width was obtained numerically by successively adding up widths greater than 
lo-* A units, then widths in the interval and so on, up to widths in the 
interval (lo-’, lo-’), as shown in table 1. In particular, the step which corresponds to 
the ferromagnetic phase contributes with 0.25 A units to the sum. The numerical 
evidence is that the staircase is complete for h = 1. 

We note the presence of an inflection point on the F line at ( h  = 1, A = 0.25). All 
the boundary lines of the commensurate modulated phases converge to this point (as 
can be seen in the amplification of the region in the dashed rectangle, figure 4). This 

Table 1. Sum of the width, of !he mommenwratc modulslcd pharc, for h = I In 3 unlls 
,for 0 ~ 3 ~ 0 . 5 , .  The wdlh of !he fcnomdgncu; ph3.e 10.25. 15 included in !he rum. T h e  
table b c g m  ulth the p h a w  uharc widths are greater than 0 01 and ends with thow U hose 
widths are greaicr ihan IO-”. 99 pha,rs *crc included in the summdiion. 

Steps uith u d t h  No of  SWll 
gredirr t h m  phase5 d udlh, 

10-2 
lo-’ 
 IO-^ 
10-5 
10.6 
lo-’ 
10-8 

5 0,470 353 480 
11 0.494 022 494 
23 0.499 400 941 
36 0.499919791 
51  0.499 986 463 
75 0.499 998 484 
99 0.499999 131 
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Figure 4. Amplification of the dashed rectangle of the phase diagram shown in figure 2. 
We observe bifurcations of phases 1/2 and 1/3. We also observe windows in the chaotic 
region (the phase 215 between the phases 113 and 1/4 at the bottom and left of the diagram, 
far instance). All the boundary lines of the commensurate modulated regions converge to 
the superdegenerate point ( h  = I ,  A = 0.25). 

point also appears in the work of Yokoi et a1 [6], who called it the superdegenerate 
point. Our phase diagram is similar to theirs. 

3.3. 1 ch<2  

For the above values of the magnetic field the tongues which represent the commensur- 
ate modulated phases may overlap. The chaotic phase emerges from this tendency. In 
analytical results as well as in Monte Carlo calculations, there is always a stable phase 
with less free energy than the others [6]. The chaotic phase at T =  0 is a mathematical 
possibility of the mapping equation which is also observed in the analysis of the van 
der Pol driving oscillator [ 141. 

Thus, in this region, both commensurate modulated phases and chaotic phases are 
observed. The order parameter q has a behaviour quite different from that of the 
previous region. A change in one parameter ( h  or A) or both can make the system 
unstable and give rise to a bifurcation. There appears a new phase with the same q 
but with double period, as can be seen in figure 4. The phase 1/2 bifurcates to 2/4, 
which in turn bifurcates to 4/8, etc. 

The value of the Lyapunov exponent defines the point of bifurcation. We obtained 
the widths of the phases and the branch splittings in the phase space in a process of 
successive bifurcations and computed Feigenbaum’s coefficients ( 8  and CY) from the 
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relations 

and 

A T Bernardes and M J de Oliveira 

where dt is the width of the ith phase and &j is the branch splitting for the j t h  bifurcation. 
In table 2 we present the results of our calculations for h = 1.19 and varying A (we 
have calculated these parameters with a precision of lo-’’ for 8 and for a. We 
spent 60 hours of CPU time on a C220 Convex computer). We give some numerical 
evidence to show that this coefficient converges to Feigenbaum’s coefficient and we 
thus have a route to chaos in agreement with Feigenbaum’s scenario. In our diagram 
we also find windows inside the chaotic region, as in Feigenbaum’s work. These 
windows have their bifurcations as  well. 

Table 2. Feigenbaum’s coefficients (8 ,  and U,, see text) computed for h = 1.19, from the 
antiferromagnetic phase up to the 2561512 phase for S and 51211024 phase for n. 

~~ 

Feigenbaum’s coefficients 

Phase 8, e, 

214 2.222 1.070 
418 2.664 3.306 
8/16 3.504 2.057 
16/32 4.234 2.684 
32/64 4.559 2.431 
641128 4.644 2.539 
1281256 4.664 2.490 
2561512 2.527 

4. Phase diagrams for T>O 

We have obtained phase diagrams for T = 0.03 (figure 5 )  and T = 0.2 (figure 6) from 
the mapping equations (6) and (7). For T > 0.5 only the paramagnetic phase is present. 
For temperatures near T = 0 (see figure 5 )  the system shows the same regions obtained 
for the zero temperature behaviour, but with different features. The ferromagnetic 
phase is replaced by a paramagnetic phase bounded by the P-line. 

We also find a region where both the incommensurate and commensurate modulated 
phases are present and q is an increasing function of A. But in this case we cannot 
define a value of h which limits this region (in the zero temperature limit h = I limits 
the region where q is increasing). For values of h < 0.8, we have the same features of 
the zero temperature limit: the tongues which represent the commensurate modulated 
phases and, between them, incommensurate modulated phases. In this case the tongues 
are narrower than in the zero temperature case. Again, we show only five of the phases 
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Figure 5. Phase diagram for the XY c h i d  model calculated for T = 0.03. P represents the 
paramagnetic phase region and the hatched region represents the chaotic region. The 
fractional numben indicate the commensurate modulated phases. We also indicate the 
fin1 bifurcation of the antiferromagnetic phase. 

in the phase diagram. For h > 0.8 the tongues fold up to meet the P-line. For h > 1 
we find a chaotic phase and commensurate modulated phases, which bifurcate in the 
same way as described for the zero temperature limit. 

In the phase diagram which represents the system at T = 0.2 (figure 6) we find only 
the paramagnetic, incommensurate and commensurate modulated phases. The modu- 
lated regions grow narrower and fold up to meet the P-line, as in the T=0.03 phase 
diagram. The P-line can be divided into two parts: the first one represents the 
paramagnetic-commensurate modulated phase transition (with period greater than 2), 
and the second part represents the paramagnetic-antiferromagnetic transition. 

Finally, we show the paramagnetic-modulated phase transition surface (figure 7). 
On this surface we can observe lines which represent boundaries of the commensurate 
modulated phases (we show only the lines 1/4, 1/3,  2/5 and 1/2-here called the 
AF-M line). All these lines converge to the superdegenerate point (described in section 
3). Here we can clearly see that the two parts of the P-line found in the T =  0.2 phase 
diagram correspond to the two parts of the transition surface, which determine the 
AF-M line. 

5. Conclusions 

We have presented a solution for the XY chiral model, in a uniform magnetic field, 
defined on a Cayley tree in the infinite coordination limit. The phases of the system 
correspond to the attractors of the mapping. In the zero temperature limit the system 
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Figure 6. Phase diagram for the XY c h i d  model calculated for T = 0.2. The commensurate 
modulated regions grow narrower. Here one can see the two parts of the P-line (see text). 

1 
4 
- 

ac 

Figure 7. Transition surface between the paramagnetic phase and the modulated phases 
for the XY chiral model. The lines which represent the boundaries of the commensurate 
modulated regions (114, 113, 215 and AF-M) are shown. The lines converge to the 
superdegenerate point. The surface has two pans (see text). 
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shows commensurate and incommensurate modulated phases and chaotic phases. The 
chaotic structures arise from the tendency of the commensurate modulated phases to 
overlap. We have observed a chaotic behaviour as proposed by Jensen et al in the 
general analysis of dissipative systems [15]. The system shows chaotic behaviour only 
for low temperatures and in the zero temperature limit. The route to chaos seems 
defined by the scenario of Feigenbaum. 

We obtain the phase transition surface in T-h-A  space. This surface shows two 
distinct parts. The first separates the antiferromagnetic phase (with q = 1/2) from the 
paramagnetic phase. The second separates the other modulated phases (commensurate 
or not) from the paramagnetic phase. In this part of the surface we calculate the 
boundary lines of the commensurate modulated regions below the phase transition 
surface. In the zero temperature case we also obtain a superdegenerate point at h = 1, 
A = 0.25. As we have pointed out above, the superdegenerate point was obtained by 
Yokoi et  ol for the T = 0 case. In our case all these transition lines (for T = 0 or T >  0) 
converge to this point. 

This work provides a good example of a model displaying many modulated phases. 
We emphasize the importance of the solution on a Cayley tree, which has allowed us 
to perform a detailed study of the XY chiral model. The general features of this 
solution are in agreement with other results. It is not clear, however, whether the 
existence of a region with a chaotic regime is due to the structure of the tree. This 
suggests the need for a more thorough study of models with modulated structures on 
trees and real lattices. 
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